DEPARTMENT OF MECHANICAL ENGINEERING

Curriculum and Syllabus for Minor Degree Programme

Name of the Minor Degree	ROBOTICS
Minor Degree Offering Department	МЕСН
Eligible Departments	All branches except MECH

Sl. No.	Course Code	Course Title	L	Т	P	Total Contact Periods	Credits
1	U23MDME01	Introduction to Robotics	3	0	0	3	3
2	U23MDME02	Basics in Mechanics	3	0	0	3	3
3	U23MDME03	Kinematics of Robotics	3	0	0	3	3
4	U23MDME04	Sensor and actuators in Robotics	3	0	0	3	3
5	U23MDME05	PLC Programming of Robotics	3	0	0	3	3
6	U23MDME06	Robotics path planning and programming	3	0	0	3	3
		TOTAL CREDITS					18

Hop report

Dr. G. DURGADEVI, M.E., Ph.D.,
DEAN - ACADEMICS,
NEW PRINCE SHRI BHAVANI COLLEGE OF
ENGINEERING AND TECHNOLOGY
(AN AUTONOMOUS INSTITUTION)
GOWRIVAKKAM, CHENNAI - 600 073.

INTRODUCTION TO ROBOTICS

L T P C 3 0 0 3

Course Objectives:

- To understand the operation and applications of stepper and servo motors
- To learn the fundamentals of digital electronics and Boolean logic
- To learn proficiency in analog electronics and Microprocessor fundamentals

UNITI

INTRODUCTION TO ROBOTICS

q

Brief History-Definition -Three laws -Robot anatomy-DOF- Misunderstood devices. Classification of Robotic systems- work volume- type of drive. Associated parameters-resolution, accuracy, repeatability, dexterity, compliance, RCC device. Introduction to Principles & Strategies of Automation-Types & Levels of Automations Need of automation- Industrial applications of robots

UNIT II

DIGITAL FUNDAMENTALS

9

Stepper Motor: Classifications- Construction and Principle of Operation - Applications. Servo Mechanism – DC Servo motor - AC Servo motor. Number Systems – Decimal, Binary, Octal, Hexadecimal, 1's and 2's complements, Codes – Binary, BCD, Excess 3, Gray, Boolean theorems, Logic gates, Universal gates, Sum of products and product of sums

UNIT III

ANALOG ELECTRONICS

9

Resistor, Inductor and Capacitor in Electronic Circuits- Semiconductor Materials: Silicon & Germanium – PN Junction Diodes, Zener Diode – Characteristics Applications – Bipolar Junction Transistor-Biasing, JFET, SCR, MOSFET, IGBT – Types, I-V Characteristics and Applications, Rectifier and Inverters

UNIT IV

PROGRAMMING PROCESSOR

9

Instruction - format and addressing modes – Assembly language format – Data transfer, data manipulation & control instructions – Programming: Loop structure with counting & Indexing

UNIT V

MICROPROCESSOR & MICROCONTRULLER

q

Introduction – Pin Configuration - Architecture of 8085 – Addressing Modes – Instruction set, Timing diagram of 8085-Microcontroller Systems -Single-Board Microcontroller Systems

TOTAL: 45 PERIODS

TEXT BOOKS:

- Ganesh S Hedge, "A textbook of Industrial Robotics", 2nd Edition, Lakshmi Publications, 2006
- Mikell P Groover "Industrial Robotics Technology, Programming and applications", 2nd Edition, Tata McGraw Hill, 2012

Dobrens

Dr. G. DURGADEVI, M.E., Ph.D.,
DEAN - ACADEMICS,
NEW PRINCE SHRI BHAVANI COLLEGE OF
ENGINEERING AND TECHNOLOGY
(AN AUTONOMOUS INSTITUTION)
GOWRIVAKKAM, CHENNAI - 600 073.

- Fu K S Gonalz R C, ice C S G "Robotics Control, Sensing, Vision and Intelligence", 2nd Edition, Tata McGraw Hill, 2007
- 2 Janakiraman P A, "Robotics and Image Processing", 3rd Edition, Tata McGraw Hill, 2005
- Jazar, "Theory of Applied Robotics: Kinematics, Dynamics and Control", 3rd Edition, Springer, 2010

ONLINE RESOURCES:

- https://nptel.ac.in/courses/112105249
- 2 https://archive.nptel.ac.in/courses/108/105/108105112/
- 3 https://nptel.ac.in/courses/108108076

COURSE OUTCOMES:

Upon the completion of the course, the students will be able to

- CO1 Explain the operation, types and applications of stepper and servo motors
- CO2 Apply digital electronics concepts to simplify logic circuits
- CO3 Analyze the characteristics and working principles of PN junction diodes and Zener diodes
- **CO4** Write assembly language programs for debugging in microprocessors and interfacing
- CO5 Explain the principles and components of microprocess*r and microcontroller

CO-PO-PSO MAPPING:

	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PS02
CO1	2	2	1	1	14	1	-	120	•	-	-7	1	2	1
CO2	3	2	1	1	-	1	-	0 <u>11</u> 0	(<u>=</u>)	<u>1</u> 20	ž	1	2	1
CO3	3	3	2	2	*	1						1	2	1
CO4	3	3	3	3	-	1	:e:	*	-	-	-	1	2	1
CO5	2	2	1	1	-	1	1=1	-	2.43	-	-	1	2	1

DEAN - ACADEMICS,
NEW PRINCE SHRI BHAVANI COLLEGE OF
ENGINEERING AND TECHNOLOGY

(AN AUTONOMOUS INSTITUTION)
GOWRIVAKKAM, CHENNAI - 600 U/3.

BASICS IN MECHANICS	L	T .	P	C
	3	0	0	3

Course Objectives:

U23MDME02

- To learn to use scalar and vector analytical techniques for analyzing forces in statically Determinate structures.
- To introduce the equilibrium of rigid bodies, vector methods and free body diagrams.
- To study and understand the distributed forces, surface, loading on beam and intensity.

UNITI

STATICS OF PARTICLES

c

Fundamental Concepts and Principles, Systems of Units, Method of Problem Solutions, Statics of Particles -Forces in a Plane, Resultant of Forces, Unit Vectors. Equilibrium of a Particle- Newton's First Law of Motion, Space and Free-Body Diagrams

UNIT II

EQUILIBRIUM OF RIGID BODIES

9

Principle of Transmissibility, Equivalent Forces, Vector Product of Two Vectors, Moment of a Force about an Axis, Couple - Moment of a Couple, Equivalent Couples, Resolution of a Given Force into a Force -Couple system.

HAIT III

DISTRIBUTED FORCES

9

Centroids of lines and areas – symmetrical and asymmetrical shapes, Determination of Centroids of Volumes by Integration. Moments of Inertia of Areas and Mass

UNIT IV

GEARS AND GEAR TRAINS

Q

Spur gear – law of toothed gearing – involute gearing – Interchangeable gears – Gear tooth action interference and undercutting – nonstandard teeth – gear trains – parallel axis gears trains – epicyclic gear trains

UNIT V

DYNAMICS OF PARTICLES

9

Kinematics - Rectilinear Motion and Curvilinear Motion of Particles. Kinetics- Newton's Second Law of Motion -Equations of Motions, Dynamic Equilibrium, Energy and Principle of Work and Energy

TOTAL: 45 PERIODS

TEXT BOOKS:

- Lynch, K M, Park, F C, "Modern Robotics: Mechanics, Planning and Control", 2nd Edition, Cambridge University Press, 2010
- Ceccarelli, M," Fundamentals of Mechanics Manipulation of robotic", 2nd Edition, Springer International Publishing, 2013

BALLE O

Dr. G. DURGADEVI, M.E., Ph.D.,
DEAN - ACADEMICS,
NEW PRINCE SHRI BHAVANI COLLEGE OF
ENGINEERING AND TECHNOLOGY
(AN AUTONOMOUS INSTIT!
GCOMIVAKKAM, CHEMNA, 1900 313.

- Boresi P, Schmidt J, "Engineering Mechanics: Statics and Dynamics", 2nd Edition, Cengage learning, 2008
- Hibbeller, R C , "Engineering Mechanics: Statics and Engineering Mechanics" 2^{nd} Edition, Pearson Education, 2007
- Irving H Shames, Krishna Mohana Rao G, "Engineering Mechanics Statics and Dynamics", 2nd Edition, Prentice Hall of India, 2005

ONLINE RESOURCES:

- 1 https://nptel.ac.in/courses/112/106/112106270/
- 2 https://ocw.mit.edu/courses/8-01sc-classical-mechanics-fall-2016/
- 3 https://www.khanacademy.org/science/mechanics

COURSE OUTCOMES:

Upon the completion of the course, the students will be able to

- **CO1** Explain the vector and scalar representation of forces and moments
- CO2 Analyze the moment of a force about a point and an axis using vector algebra.
- CO3 Calculate the properties of distributed forces
- CO4 Design the gear teeth and gear train by the law of toothed gearing
- CO5 Calculate dynamic forces exerted in rigid body

CO-PO-PSO MAPPING:

	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1	2	2	1	1	-	1	-	-		<u> </u>	-	1	2	1
CO2	3	3	2	2		1	-	E.	*	- 1		1	2	1
CO3	3	2	1	2		1	-	-	-	-	0 -	1	2	1
CO4	3	3	3	3		1	-	2	=	e (e	 4	1	2	1
CO5	3	2	1	2	+	1	=	.5	-	-	-	1	2	1

PABLES OF

Dr. G. DURGADEVI, M.E., Ph.D.,
DEAN - ACADEMICS,
NEW PRINCE SHRI BHAVANI COLLEGE OF
ENGINEERING AND TECHNOLOGY
(AN AUTONOMOUS INSTITUTED TO
GOWRIVAKKAM, CHENNAI - GUU U/3.

KINEMATICS OF ROBOTICS

L T P C

Course Objectives:

- To introduce Robots history, terminologies, classification and configurations
- To get knowledge about basic Geometrical and Algebraic approach to solve forward kinematics of serial manipulator
- To get knowledge about advanced forward kinematics of serial manipulator

UNITI

OVERVIEW OF ROBOTICS

9

Introduction to Robotics - History - Definitions - Law of Robotics - Terminologies - Classifications Overview - Links & Joints - Degrees of Freedoms - Coordinate Systems - Work Volume - Precision, Repeatability & Accuracy - Position and Orientation of Objects - Roll, Pitch and Yaw Angles - Joint Configuration of Five Types of Serial Manipulators - Wrist Configuration - Overview of end effector

UNIT II

FORWARD KINEMATICS GEOMETRICAL AND ALGEBRAIC APPROACH

a

Need for forward and Inverse Kinematics Equation – Parameters in Design and Control – Methods of forward and inverse kinematics- Geometric and Algebraic Approach in Forward Kinematics Solution, 1 DOF - 2 DOF Planar Robot (2P and 2R); 3DOF 2RP Spatial Robot

UNIT III

FORWARD KINEMATIC MODELING DENAVIT-HARTENBERG (DH) APPROACH

9

Unit Circle Trigonometry - Translation Matrix - Rotation matrix, Euler Angles - Homogeneous Transformation - D-H and Modified D-H Convention and Procedures - Forward kinematics Solution using D-H Convention, Cartesian, Cylindrical, Spherical, SCARA and Articulated 3 DOF robots - 3 DOF robot with wrist

UNIT IV

INVERSE KINEMATICS MODELING

0

Introduction to inverse kinematics -Issues in inverse kinematics - Inverse kinematics of 2 DOF Planar robot - 2 and 3 DOF planar and Spatial robot - Tool configuration - Inverse kinematics of 3 axis robot and 6 axis Robot - Inverse kinematics Computation-Closed loop solution

UNITV

KINEMATIC MODELING OF DIFFERENTIAL DRIVE ROBOT

9

Degree of Mobility, Steer ability and Maneuverability- Mobile Robot kinematics - Kinematic model and constraints, Mobile robot workspace - Representation of robot position - Kinematic models of differential wheel drive - Fixed wheel and steered wheel

TOTAL: 45 PERIODS

popular

Dr. G. DURGADEVI, M.E., Ph.D.,
DEAN - ACADEMICS,
NEW PRINCE SHRI BHAVANI COLLEGEIOF
ENGINEERING AND TECHNOLOGY
(AN AUTONOMOUS INSTITUTE A)
GOWRIVAKKAM, CHENNAI - 655 573.

TEXT BOOKS:

- Mikell P Groover, "Industrial Robotics", 2nd Edition, Tata McGraw Hill, 2012
- 2 Lynch, Kevin M, and Frank C, "Park Modern Robotics: Mechanics, Planning and Control", 1st Edition, Cambridge University Press, 2017

Ą

REFERENCES:

- S K Saha, "Introduction to Robotics", 2nd Edition, Tata McGraw-Hill, 2017
- John J Craig, "Introduction to Robotics", 3rd Edition, Pearson Education, 2021
- 3 Arthor Critchlow, "Introduction to Robotics", 1st Edition, Macmillan, 2009

ONLINE RESOURCES:

- 1 https://archive.nptel.ac.in/courses/112/105/112105236/
- 2 https://onlinecourses.nptel.ac.in/noc21_me76/preview
- 3 https://archive.nptel.ac.in/courses/112/105/112105249/

COURSE OUTCOMES:

Upon the completion of the course, the students will be able to

- CO1 Explain the basic terminologies of robotics and its classification
- CO2 Evaluate forward kinematic model for planar and spatial robot manipulator
- **CO3** Evaluate the transformation matrices including translation and rotation matrices, to model position of robotic links
- **CO4** Explain the concept of inverse kinematics and its significance in robotic motion planning and control.
- CO5 Analyze the kinematic model for differential drive mobile robot

CO-PO-PSO MAPPING:

	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	2011	P012	PSO1	PSO2
CO1	2	2	1	1	-	1	-	1		-	. 	1	2	1
CO2	3	3	2	2	-	1		*	*	=	æ	1	2	1
CO3	3	3	2	2	7	1		*	•	-		1	2	1
CO4	2	2	1	1	-	1	-		-	-	- ,	1	2	1
CO5	3	3	2	2	-	1	-	=0	-	-	-	1	2	1

Phone 6

Dr. G. DURGADEVI, M.E., Ph.D.,
DEAN - ACADEMICS,
NEW PRINCE SHRI BHAVANI COLLEGE OF
ENGINEERING AND TECHNOLOGY
(AN AUTONOMOUS INSTITUTION)
GOWRIVAKKAM, CHENNAI - 600 073.

SENSORS AND ACTUATORS

L T P C 3 0 0 3

Course Objectives:

- To understand the concepts of measurement technology.
- To learn the fundamentals of signal conditioning, data acquisition and communication systems used in mechatronics system development.
 - To understand the signal conditioning and DAQ systems.

UNITI

INTRODUCTION

Q

Basics of Measurement – Classification of errors – Error analysis – Static and dynamic characteristics of transducers – Performance measures of sensors – Classification of sensors – Sensor calibration techniques – Sensor Output Signal Types

UNIT II

MOTION, PROXIMITY AND RANGING SENSORS

g

Motion Sensors – Potentiometers, Resolver, Encoders – Optical, Magnetic, Inductive, Capacitive, LVDT – RVDT – Synchro – Microsyn, Accelerometer – GPS, Bluetooth, Range Sensors – RF beacons, Ultrasonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR).

UNIT III

FORCE, MAGNETIC AND HEADING SENSORS

9

Strain Gage, Load Cell, and Magnetic Sensors –types, principle, requirement and advantages: Magneto resistive – Hall Effect – Current sensor Heading Sensors – Compass, Gyroscope, Inclinometers

UNIT IV

OPTICAL, PRESSURE AND TEMPERATURE SENSORS

9

Force, torque, power — mechanical, Pneumatic, Hydraulic and Electrical type. bimetallic strip, thermocouples, electrical resistance thermometer — Reliability and Calibration

UNITV

SIGNAL CONDITIONING AND DAQ SYSTEMS

0

Amplification – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi-channel data acquisition – Data logging - Applications - Automobile, Aerospace, Home appliances, Manufacturing and Environmental monitoring

TOTAL: 45 PERIODS

TEXT BOOKS:

- Ernest O Doebelin , "Measurement Systems Applications and Design", 2^{nd} Edition , Tata McGraw Hill, 2009
- Sawney A K, Puneet Sawney , "A Course in Mechanical Measurements and Instrumentation and Control", 12^{th} Edition, Dhanpat Rai , 2013

APPMO

Dr. G. DURGADEVI, M.E., Ph.D.,
DEAN - ACADEMICS,
NEW PRINCE SHRI BHAVANI COLLEGE OF
ENGINEERING AND TECHNOLOGY
(AN AUTONOMOUS INSTITUTY)
GOWRIVAKKAM, CHENNAI - 6... 3.

- Richard Zurawski, "Industrial Communication Technology Handbook", 2nd Edition, CRC Publications, 2015
- Patranabis D, "Sensors and Transducers", 2nd Edition Prentice Hall of India publication, 2011
- Hans Kurt Tonshoff , Ichiro, "Sensors in Manufacturing", 2^{nd} Edition, John Wiley & sons, 2021

ONLINE RESOURCES:

- 1 https://onlinecourses.nptel.ac.in/noc21_ee32/preview
- 2 http://ndl.iitkgp.ac.in/he_document/nptel/16331_16332
- 3 http://digimat.in/nptel/courses/video/108108147/L01.html

COURSE OUTCOMES:

Upon the completion of the course, the students will be able to

- **CO1** Explain the various calibration techniques and types of sensors
- CO2 Describe the working principle and characteristics of force, magnetic, heading, pressure and temperature sensors

 CO3 Explain the sensors and transduceristics.
- CO3 Explain the sensors and transducers in various applications
- CO4 Analyze the reliability and calibration aspects in measurement systems
- CO5 Describe the operation and importance of data logging in various applications

CO-PO-PSO MAPPING:

	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P0.11	P012	PSO1	PSO2
CO1	2	2	1	1	1-	1	340	•		-	-	1	2	1
CO2	2	2	1	1		1	-	-	-	-	//=	1	2	1
CO3	2	2	1	1	120	1	-	_				1	2	1
CO4	3	3	2	2	-	1	-		-			1		1
CO5	2	2	1	1	-	1		-				1	2	1

Dr. G. DURGADEVI, M.E., Ph.D.,
DEAN - ACADEMICS,
NEW PRINCE SHRI BHAVANI COLLEGE OF
ENGINEERING AND TECHNOLOGY
(AN AUTONOMOUS INSTITUT
GOWRIVAKKAM, CHENNAI - C.C.

PLC PROGRAMMING OF ROBOTICS

L T P C

Course Objectives:

- Understand basic PLC terminologies, digital principles, PLC architecture and operation
- Familiarize different programming language of PLC
- Develop PLC logic for simple applications using ladder logic

UNITI

INTRODUCTION TO PLC

9

Introduction to PLC: Microprocessor, I/O Ports, Isolation, Filters, Drivers, Microcontrollers/DSP, PLC/DDC- PLC Construction: PLC, PLC Memories, PLC I/O,PLC Special I/O, PLC Types

UNIT II

PLC INSTRUCTIONS

9

PLC Basic Instructions: PLC Ladder Language- Function block Programming-Ladder/Function Block functions- PLC Basic Instructions, Basic Examples (Start Stop Rung, Entry/Reset Rung)- Configuration of Sensors, Switches, Solid State Relays-Interlock examples- Timers, Counters, Examples

UNIT III

PLC PROGRAMMING

9

Different types of PLC program, Basic Ladder logic, logic functions, PLC module addressing, registers basics, basic relay instructions, Latching Relays, data handling, data move functions, timer-counter instructions, input-output instructions, sequencer instructions

UNIT IV

COMMUNICATION OF PLC AND SCADA

O

Communication Protocol – Modbus, HART, Profibus, SCADA: Hardware and software, Remote terminal units, Master Station and Communication architectures

UNIT V

CASE STUDIES

9

Stepper Motor Control - Elevator Control-CNC Machine Control-conveyor control-Interlocking Problems

TOTAL: 45 PERIODS

TEXT BOOKS:

- Frank Petruzzula,"Programmable Logic Controllers",2nd Edition, Tata McGraw Hill , 2008
- John W Webb, Ronald A Reis, "Programmable Logic Controllers Principles and Applications", 2nd Edition, Prentice Hall of India, 2019

Dr. G. DURGADEVI, M.E., Ph.D.,
DEAN - ACADEMICS,
NEW PRINCE SHRI BHAVANI COLLEGE OF
ENGINEERING AND TECHNOLOGY
(AN AUTONOMOUS INSTITUTE
COWBIVAKKAM, CHENNAL DESIGNATION
3.

- Madhuchhanda Mitra, Samarjit Sengupta, "Programmable Logic Controllers
- Industrial Automation and Introduction", 3rd Edition, Penram publishing, 2020
- J R ackworth, F D Hackworth, "Programmable Logic Controllers Principles and Applications", 2nd Edition, Pearson Education, 2017
- Hans Kurt Tonshoff, Ichiro, "Sensors in Manufacturing", 3rd Edition, John Wiley & Sons, 2001

ONLINE RESOURCES:

- 1 https://nptel.ac.in/courses/108/105/108105062
- 2 https://nptel.ac.in/courses/112/107/112107297
- 3 https://archive.nptel.ac.in/courses/112/102/112102011/

COURSE OUTCOMES:

Upon the completion of the course, the students will be able to

- **CO1** Explain the basic requirement of a PLC input/output devices and architecture
- CO2 Apply the Basics Instruction Sets used for ladder Logic and Function Block Programming
- CO3 Apply data handling and data move functions effectively in PLC-based systems
- CO4 Analyze the communication architecture between SCADA components in a control system.

2

CO5 Explain the Concepts of Communication used for PLC/SCADA

CO-PO-PSO MAPPING:

	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1	2	2	1	1	-	1	-	-)		-	-	1	. 2	1
CO2	3	. 2	1	2	-	1	2	-		-	-,	1	2	1
CO3	3	2	1.	2	-	1	-	-	ш		*	1	2	1
CO4	3	3	2	2	-	1	2.0	-	-	1=1	_	1	2	1
CO5	2	2	1	1	-	1	-	-	-	-	-	1	2	1

Polerano)

Dr. G. DURGADEVI, M.E., Ph.D.,
DEAN - ACADEMICS,
NEW PRINCE SHRI BHAVANI COLLEGE OF
ENGINEERING AND TECHNOLIS (AN AUTONOMOUS INSTITE)
GOWRIVAKKAM, CHENNAI - 600 073.

U23MDME06

ROBOT PATH PLANNING AND **PROGRAMMING**

. L P C 3 3

Course Objectives:

- To introduce the fundamental concepts of robot motion and path planning
- To understand the principles and techniques of robot programming
- To understand path planning programming strategies and expose students to real-time applications

UNITI

TRAJECTORY PLANNING APPROACHES

Definitions - Task planning and Trajectory planning - Representation of end-effector: Cartesian and joint space schemes -Workspace Analysis: work envelope of a multi DOF manipulator - Applications: Point to point motion and continuous path motion

UNIT II

TRAJECTORY PLANNING OF MANIPULATOR

9

Joint space techniques - Motion profiles - Cubic polynomial, Linear Segmented Parabolic Blends and cycloidal motion - Straight line and circular trajectories

UNIT III

PATH PLANNING OF MOBILE ROBOT

Introduction - Representation of the Robot's Environment - Review of configuration spaces - Visibility Graphs - Voronoi diagrams - Attractive and Repulsive- Planning with moving obstacles - Probabilistic Roadmaps - Random trees

PATH PLANNING ALGORITHMS

9

Planning - A* Algorithm - the D*Algorithm - Path control-Graph search and discrete planning algorithms - Sensor-Based Motion Planning Algorithms

ROS PROGRAMMING

9

Introduction to Robot Operating System (ROS) - ROS examples - Introduction to programming using ROS - Industrial ROS - Programming for point to point /continuous - operations - Case Study

TOTAL: 45 PERIODS

TEXT BOOKS:

- Mason, M T , " Mechanics of Robotic Manipulation", 2^{nd} Edition, MIT Press , 20161
- LaValle, S M, "Planning algorithms Italy: Cambridge University", 3rd Edition, 2 Cambridge University Press, 2008

REFERENCES:

- Rafael C Gonzales, Richard E Woods, "Digital Image Processing", 4th Edition, 1 Pearson Education, 2015
- Emanuele Trucco, Alessandro Verri, "Introductory Techniques for 3D 2 Computer Vision", 1st Edition, Prentice Hall of India , 2008
- Hans Kurt Tonshoff, Ichiro, "Sensors in Manufacturing", 3rd Edition, John Wiley 3 & Sons publications, 2016

Dr. G. DURGADEVI, M.E., Ph.D., DEAN - ACADEMICS, NEW PRINCE SHRI BHAVANI COLLET'S OF ENGINEERING AND TECHNO! (AN AUTONOMOUS INST COUMVAKKAM, CHENNA 3.

ONLINE RESOURCES:

- 1 https://archive.nptel.ac.in/courses/112/104/112104308/
- 2 https://nptel.ac.in/courses/112105249
- 3 https://ocw.mit.edu/courses/2-12-introduction-to-robotics-fall-2005/

COURSE OUTCOMES:

Upon the completion of the course, the students will be able to

- Apply trajectory planning techniques for both point-to-point and continuous path motion in robotic applications
- CO2 Describe the trajectory planning and path planning for mobile robot and Manipulator
- CO3 Apply the Path and Trajectory planning algorithms for various Applications
- CO4 Analyze heuristic-based algorithms such as A* and D* for optimal path finding
- CO5 Design a path and trajectory for real time robot applications

CO-PO-PSO MAPPING:

	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1	3	2	1	1	-	1	-	-	-			1	2	1 302
CO2	2	2	1	1	•	1	-	-	-	12	_	1	2	. 1
CO3	3	2	1	1		1	n=.	-	1924	_	_	1	2	
CO4	3	3	2	2		1	-	-	-	-	9 -	1	2	
CO5	3	3	3	3		1	-	- 1		-		1	2	1

HABLEY CA

Dr. G. DURGADEVI, M.E., Ph.D.,
DEAN - ACADEMICS,
NEW PRINCE SHRI BHAVANI COLLEGE OF
ENGINEERING AND TECHNOLOGY
(AN AUTONOMOUS INSTITUTION)
COWRIVAKKAM, CHEMNAL - 600 073.